28th EURL-Salmonella Workshop

EU MONITORING OF SALMONELLA AND OF SALMONELLOSIS FOODBORNE OUTBREAKS, IN 2021

Frank Boelaert

GENERAL OBSERVATIONS ON EUOHZ 2021

Zoonotic diseases and foodborne outbreaks on the rise, but still below pre-pandemic levels

... exceptions are: **yersiniosis**, **tularaemia**, **STEC** infections, **listeriosis** and **foodborne listeriosis outbreaks**

SPECIFICS FOR THE EUOHZ 2021

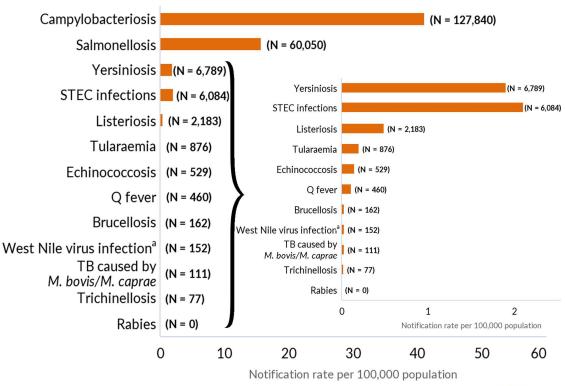
- Second year of the COVID-19 pandemic
- Withdrawal of United Kingdom (UK) from the EU since 2020
 - ➤ last reporting of UK to ECDC : 2019 data
 - > reporting of UK to EFSA
 - ➤ last reporting of UK : 2020 data
 - ➤ Northern Ireland reported 2021 data that were assigned to the MSs group

GB	United Kingdom	Great Britain, Northern Ireland, Channel Islands and Isle of Man
XI	United Kingdom (Northern Ireland)	Code to be used if United Kingdom (in respect of Northern Ireland) needs to be identified
XU	United Kingdom (excluding Northern Ireland)	Code to be used if United Kingdom (excluding Northern Ireland) needs to be identified.

SPECIFICS FOR THE EUOHZ 2021 (2)

Interactive communication tools:

All links are here


REPORTED NUMBERS AND NOTIFICATON RATES OF CONFIRMED HUMAN ZOONOSES IN THE EU, 2021

EU trends 2017-2021 period?

↓ Q fever, Brucella

† tularaemia

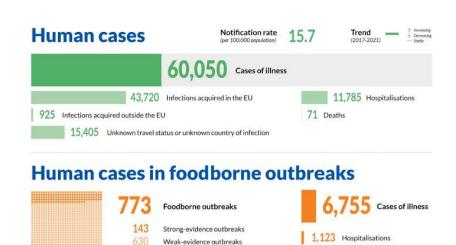
= campylobacteriosis, salmonellosis, listeriosis, Shiga toxin-producing *E.coli*, trichinellosis, yersiniosis and West Nile virus

REPORTED HOSPITALISATIONS AND DEATHS DUE TO ZOONOSES IN CONFIRMED HUMAN CASES AND AMONG FOODBORNE OUTBREAK CASES IN THE EU, 2021

	Surveillance data on human cases (source: ECDC)								Foodborne outbreaks (FBO) (source: EFSA)										
			Hospitalisation						Deaths				Hospitalisat						
Disease		Confirmed human cases N	human	Stat avail		Reporting MSs ^(b)	Cases propo of hospita cas	rtion f alised	Outco availa		Reporting MSs ^(b)		ths and fatality	Outbre aks	Cases	ions propo of hospita cas	rtion f alised	and	aths case ality
	N		N	%	N	N	%	N	%	N	N	%	N	N	N	%	N	%	
Campylobacteriosis	127,840	45,121	35.3	15	10,469	23.2	91,177	71.3	16	26	0.03	249	1,051	134	12.7	6	0.6		
Salmonellosis	60,050	30,951	51.5	16	11,785	38.1	38,658	64.4	16	71	0.18	773	6,755	1,123	16.6	1	0.1		
Yersiniosis	6,789	1,564	23.0	13	508	32.5	3,596	53.0	21	0	0	21	125	14	11.2	0	0		
STEC infections	6,084	2,133	35.1	17	901	42.2	4,366	71.8	20	18	0.41	31	275	47	13.5	0	0		
Listeriosis	2,183	956	43.8	16	923	96.5	1,427	65.4	14	196	13.7	23	104	48	46.2	12	11.5		
Tularaemia	876	221	25.2	10	112	50.7	341	38.9	11	2	0.59	0	0	0		0	-		
Echinococcosis	529	121	22.9	13	51	42.1	270	51.0	16	0	0	0	0	0	-	0	-		
Q fever	460	NA	NA	NA	NA	NA	270	58.7	11	4	1.5	0	0	0	2	0	_		
Brucellosis	162	60	37.0	10	36	60.0	59	36.4	11	0	0	1	2	2	100	0			
West Nile virus infection ^(a)	152	83	54.6	6	70	84.3	152	100	8	11	7.2	NA	NA	NA	NA	NA	NA		
Trichinellosis	77	26	33.8	6	10	38.5	28	36.4	6	0	0	1	2	0	100	0	-		
Rabies	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA		

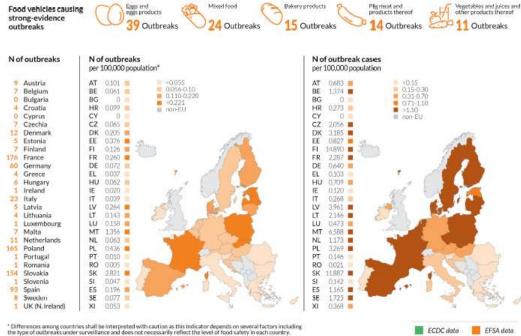
Data on congenital toxoplasmosis are not shown since 2021 data are not available yet.

MSs: Member States.


NA: Not applicable as the information is not collected for this disease.

(a): Total number of locally acquired infections (probable and confirmed cases).

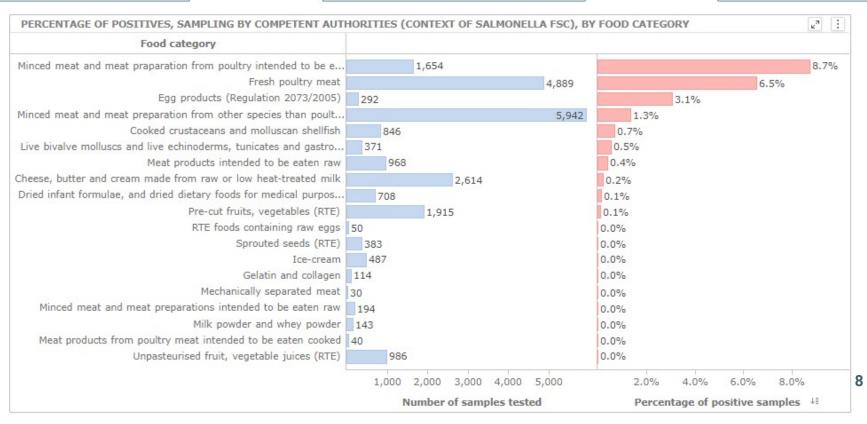
(b): Not all countries observed cases for all diseases.



SALMONELLA, EU, 2021

1 Death

Foodborne outbreaks



SALMONELLA, REGULATION (EU) NO 2073/2005, FSC, DISTRIBUTION STAGE, SINGLE OFFICIAL SAMPLES, EU, 2021

Number of countries

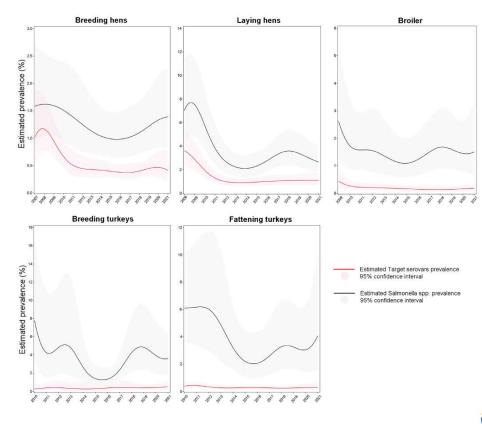
Number of samples tested
22,626

Percentage of positive samples 2.53%

SALMONELLA, REGULATION (EU) NO 2019/627, PHC, DISTRIBUTION STAGE, SINGLE OFFICIAL SAMPLES, EU, 2021

Considering data on *Salmonella* from carcases of different species, irrespective of the sampler, the prevalence values found for neck skin samples from **broilers** (4.2%) and **turkeys** (3.7%) were much higher than those reported for carcase surfaces of ruminants (cattle (0.3%), sheep (0.6%) and goats (1.6%)) and horses. Pigs: 1.4%.

Table 12: Comparisons of proportions (%) of Salmonella-positive single samples from pig carcases after dressing, but before chilling, by sampler and reporting MS, EU, 2021


Competent authority (CA) Food business operator (FBOp)

	Competent authority (CA)			rood bus	iness oper				
Country	N tested samples	N (%) positive samples	CI ₉₅	N tested samples	N (%) positive samples	CI ₉₅	p-value ^(b)	Interpretation	
Austria	-	-	-	4,056	2 (0.05)	[0.01; 0.18]	-	-	
Belgium	955	59 (6.2)	[4.7; 7.9]	4,108	62 (1.5)	[1.2; 1.9]	< 0.001	CA > FBOp	
Bulgaria	5,049	0	[0; 0.07] ^(a)	305	0	[0; 1.2] ^(a)	NS		
Croatia	1,630	4 (0.24)	[0.07; 0.63]	=	-	=	===	=	
Cyprus	2	0	[-]	- Sec. 1	122	-	-		
Czechia	4,508	35 (0.78)	[0.54; 1.1]	=1		876	273		
Denmark	=	120		10,773	80 (0.74)	[0.59; 0.92]	-		
Estonia	357	6 (1.7)	[0.62; 3.6]	1,581	12 (0.76)	[0.39; 1.3]	0.096	CA > FBOp	
France	:22	2	-	13,662	628 (4.6)	[4.3; 5.0]		= "	
Germany	200	4 (2.0)	[0.55; 5.0]	24,885	156 (0.63)	[0.53; 0.73]	0.039	CA > FBOp	
Hungary	3,045	44 (1.4)	[1.1; 1.9]	=	-		- 42	== 100	
Ireland	391	19 (4.9)	[3.0; 7.5]	2,064	25 (1.2)	[0.78; 1.8]	< 0.001	CA > FBOp	
Italy	5,147	174 (3.4)	[2.9; 3.9]	11,494	107 (0.93)	[0.76; 1.1]	< 0.001	CA > FBOp	
Latvia	: e	: e	Sec 1	579	3 (0.52)	[0.11; 1.5]	=:	=	
Luxembourg	120	- 2	929	345	2 (0.58)	[0.07; 2.1]		27	
Malta	-		(4)	120	13 (10.8)	[5.9; 17.8]	+		
Netherlands	- 2	72	72 J	5,635	120 (2.1)	[1.8; 2.5]			
Poland	273	0	[0; 1.3] ^(a)	5,576	3 (0.05)	[0.01; 0.16]	NS		
Portugal				8,222	66 (0.8)	[0.62; 1.0]			
Romania	2,540	0	[0; 0.14] ^(a)	2,881	0	[0; 0.13] ^(a)	NS		
Slovakia	100	155	275	3,209	0	[0; 0.12] ^(a)	270		
Slovenia	120	124		970	13 (1.3)	[0.72; 2.3]	=	=	
Spain	705	82 (11.6)	[9.4; 14.2]	2,805	109 (3.9)	[3.2; 4.7]	< 0.001	CA > FBOp	
EU Total (27 + XI)	24,802	427 (1.7)	[1.6; 1.9]	103,270	1401 (1.4)	[1.3; 1.4]	< 0.001	CA > FBOp	
EU Total (27 + XI) providing CA and FBOp data	15,617	344 (2.2)	[2.0; 2.4]	55,699	474 (0.85)	[0.78; 0.93]	< 0.001	CA > FBOp	

POULTRY MONITORING DATA ACCORDING TO THE SNCP

Percentage (%) of positive flocks

SALMONELLA, EU, 2021

- Monitoring PHC on carcases at the slaughterhouse: highest proportions of positive samples among official control samples for broilers (14%), turkeys (7.4%), pigs (1.7%) and sheep (1.2%). For goats, the highest proportion of positive samples was for those collected by food business operators (2.1%).
- Sixteen MSs and the United Kingdom (Northern Ireland) met the reduction targets for all poultry populations.
- Prevalence of target Salmonella serovars-positive broiler and fattening turkey flocks: from competent authorities was significantly higher than that from food business operators
- Flock prevalence trends for target Salmonella serovars was fairly stable over the last few years, for all poultry populations. A significant increase in the estimated breeding turkey Salmonella flock prevalence was noted in 2021 compared with 2016.

SALMONELLA SEROVARS, EU, 2021

Table 29: Distribution of reported confirmed cases of human salmonellosis in the EU, 2019–2021, for the 20 most frequent *Salmonella* serovars in 2021

		2021				
Serovar	Cases	MSs	%			
Enteritidis	27,734	24	54.6			
Typhimurium	5,781	24	11.4			
Monophasic Typhimurium 1.4.[5] 0.12:i:-	4,495	14	8.8			
Infantis	1,019	24	2.0			
Derby	474	17	0.93			
Coeln	463	15	0.91			
Braenderup	373	15	0.73			
Napoli	352	12	0.69			
Chester	316	12	0.62			
Newport	311	20	0.61			
Montevideo	219	11	0.43			

Table 32: Distribution of the top 20 *Salmonella* serovars by food–animal source (laying hens, broilers, turkeys, pigs and bovines), EU, 2021 **Poultry population**

Serovar	N (%) positive samples	N MSs
Enteritidis	425 (35.5)	22
Kentucky	124 (10.3)	5
Typhimurium	113 (9.4)	15
Enterica, subspecies enterica	97 (8.1)	3
Infantis	85 (7.1)	12
Braenderup	24 (2.0)	8
Mbandaka	20 (1.7)	8
Anatum	19 (1.6)	5
Corvallis	17 (1.4)	6
Montevideo	16 (1.3)	6
Ohio	16 (1.3)	4
Thompson	15 (1.2)	6
Newport	13 (1.1)	5
Senftenberg	13 (1.1)	6
Livingstone	11 (0.92)	5
Mikawasima	11 (0.92)	2
Agona	10 (0.83)	4
Hadar	10 (0.83)	3
Mkamba	10 (0.83)	1
Monophasic Typhimurium	9 (0.75)	1
Other	140 (11.7)	26
Total	1,198	

Serovar	N (%) positive samples	N MSs
Infantis	6,468 (45.1)	23
Enteritidis	1,147 (8.0)	21
Livingstone	998 (7.0)	7
Mbandaka	838 (5.8)	10
Java	439 (3.1)	5
Enterica, subspecies enterica	436 (3.0)	4
Thompson	374 (2.6)	7
Typhimurium	330 (2.3)	17
Montevideo	301 (2.1)	5
Group O:7	281 (2.0)	3
Senftenberg	273 (1.9)	8
Newport	171 (1.2)	15
Agona	170 (1.2)	13
Kedougou	156 (1.1)	7
enterica	150 (1.0)	3
Virchow	99 (0.69)	5
Kentucky	96 (0.67)	9
Mkamba	92 (0.64)	1
Napoli	81 (0.56)	2
Monophasic Typhimurium	81 (0.56)	2
Other	1,367 (9.5)	27
Total	14,348	

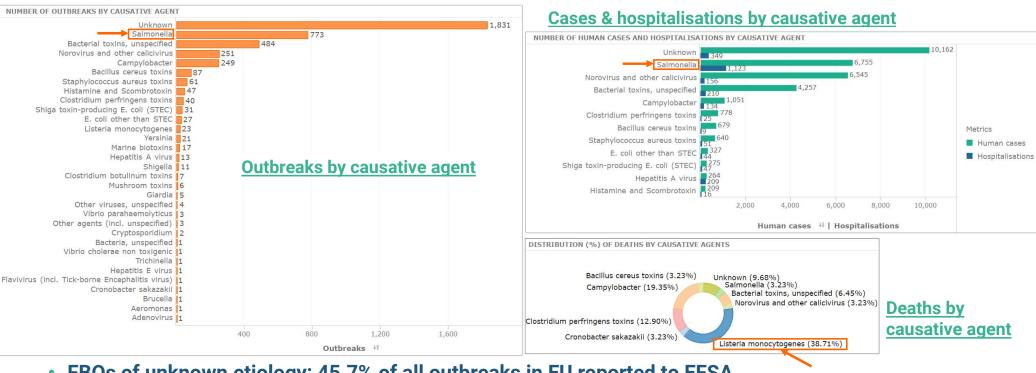
Serovar	N (%) positive samples	N MSs
Anatum	785 (29.8)	7
Agona	620 (23.5)	9
Infantis	189 (7.2)	9
Newport	94 (3.6)	9
Senftenberg	90 (3.4)	4
Enterica, subspecies enterica	81 (3.1)	1
Typhimurium	71 (2.7)	9
Derby	61 (2.3)	6
Bredeney	55 (2.1)	5
Saintpaul	55 (2.1)	4
Hadar	52 (2.0)	4
Lagos	40 (1.5)	1
Monophasic Typhimurium	40 (1.5)	2
Kedougou	38 (1.4)	3
Enteritidis	37 (1.4)	11
Coeln	32 (1.2)	5
Napoli	27 (1.0)	3
Kentucky	24 (0.91)	7
Thompson	18 (0.68)	1
Haifa	15 (0.57)	1
Other	215 (8.2)	19
Total	2,639	

SALMONELLA SEROVARS, EU, 2021

Pigs and cattle (bovine animals)

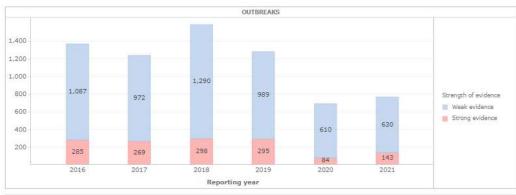
Serovar	N (%) positive samples	N MSs	
Monophasic Typhimurium	440 (28.2)	16	
Derby	347 (22.3)	21	
Typhimurium	239 (15.3)	19	
Rissen	103 (6.6)	8	
enterica	81 (5.2)	3	
Brandenburg	44 (2.8)	8	
Infantis	39 (2.5)	10	
Group B	24 (1.5)	4	
Group O:4	22 (1.4)	1	
Enterica, subspecies enterica	19 (1.2)	4	
London	19 (1.2)	7	
4,12:a:-	14 (0.9)	1	
Goldcoast	12 (0.77)	3	
Afula	10 (0.64)	1	
Enteritidis	10 (0.64)	5	
Livingstone	10 (0.64)	3	
Agona	9 (0.58)	2	
Bovismorbificans	6 (0.38)	2	
Choleraesuis	6 (0.38)	2	
Choleraesuis var. Kunzendorf	6 (0.38)	1	
Other	99 (6.3)	26	
Total	1,559		

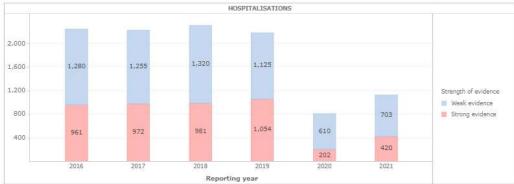
Serovar	N (%) positive samples	N MSs	
Dublin	281 (31.5)	9	
Typhimurium	265 (29.7)	15	
Monophasic Typhimurium	80 (9.0)	7	
Havana	57 (6.4)	2	
enterica	28 (3.1)	3	
Group B	19 (2.1)	3	
Derby	18 (2.0)	8	
Enteritidis	18 (2.0)	6	
Infantis	14 (1.6)	7	
Altona	9 (1.0)	1	
Agona	6 (0.67)	2	
Group C	6 (0.67)	1	
Montevideo	6 (0.67)	1	
Group C1	5 (0.56)	1	
Mbandaka	5 (0.56)	2	
Kentucky	4 (0.45)	2	
Muenster	4 (0.45)	1	
Newport	4 (0.45)	2	
Give	3 (0.34)	1	
Rissen	3 (0.34)	3	
Other	56 (6.3)	21	
Total	891		

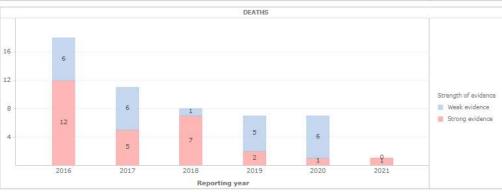


FOODBORNE OUTBREAKS IN EU, OVERVIEW, 2021 (EUOHZ REPORT)

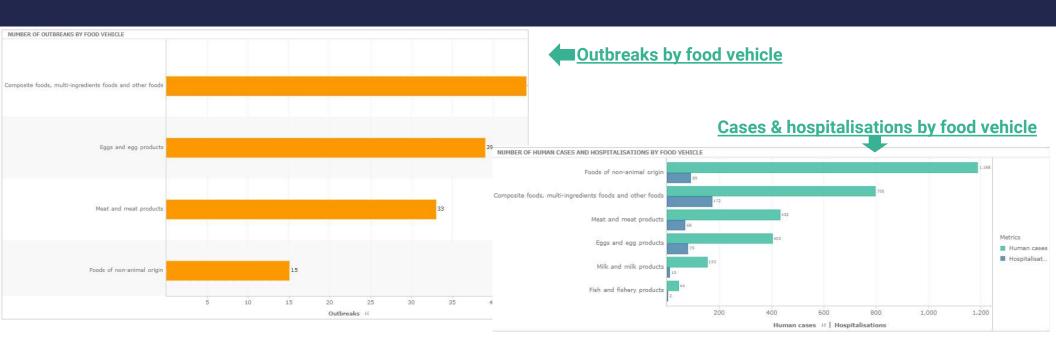
- In 2021, **27 MSs** and **United Kingdom (Northern Ireland)** reported a total of 4,005 FBOs (355 strong-evidence FBOs), 32,543 cases of illness, 2,495 hospitalisations and 31 deaths
- Among MSs, no foodborne outbreaks were detected in 2021 in Bulgaria and Cyprus
- Seven non-MSs (Bosnia and Herzegovina, Iceland, Montenegro, Norway, Republic of North Macedonia, Serbia, Switzerland) reported 83 outbreaks, 1,270 cases of illness, 65 hospitalisations and 2 deaths


OVERVIEW OF CAUSATIVE AGENTS IN EU, 2021


- FBOs of unknown etiology: 45.7% of all outbreaks in EU reported to EFSA
- Bacteria caused the highest number of outbreaks, human cases, hospitalisations and deaths
- Next to bacteria, the most frequently reported causative agents were bacterial toxins and viruses
- Cronobacter sakazakii & non-toxigenic Vibrio cholerae reported for the first time in 2021



OVERVIEW OF SALMONELLOSIS FBO, TIME TRENDS, EU



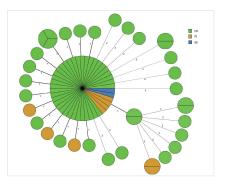
OVERVIEW OF SALMONELLOSIS FBO, STR-EV OUTBREAKS, EU, 2021

MULTI-COUNTRY OUTBREAK OF SALMONELLA MBANDAKA ST413, POSSIBLY LINKED TO CONSUMPTION OF CHICKEN MEAT IN THE EU/EEA, ISRAEL AND THE UK (30 NOVEMBER 2022)

Cases' distribution

196 cases: 7 EU/EEA n=111; Israel n=4; UK n=81

September 2021 - November 2022


Exposure and interviews

Nineteen cases have been hospitalized and **one** case in the UK died. The cases are reported across all age groups and there is no difference by gender

UK: cases reported consumption of **RTE chicken products** and chicken meat.

FI: cases had eaten various chicken products. **A subset of 15 cases** had consumed or purchased certain ready-to-eat products of three brands.

Minimum Spanning Tree

EFSA and **ECDC** outbreak assessment

Chicken meat appears to be a common ingredient of the RTE products reported by cases in Finland and the UK.

This suggests that contaminated chicken meat used as an ingredient in RTE chicken products can be the origin of infections

Based on food exposure information, six RTE products from three brands seemed to have been consumed by 15 cases in Finland before the symptom onset.

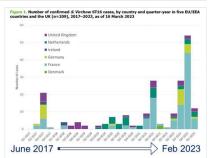
The food safety authority in Finland linked the six RTE products to the Estonian Company A.

However, the link to the Estonian Company A is **not** followed by **the identification of batch numbers** and/or expiry dates of the six RTE products and by any microbiological evidence.

Official control performed at the Estonian Company A did not reveal **any** *Salmonella* **detection** from the sampled environment and food products.

With exception of Finland, the Estonian Company A does not sell its products in the countries that have reported the number of human cases to ECDC, including UK that reported the second largest number of cases.

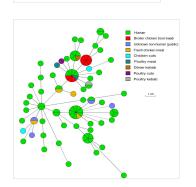
The role of the Estonian Company A as a source of infection could not be established.


New cases are likely to occur in the EU/EEA until the source has been identified and controlled.

MULTI-COUNTRY OUTBREAK OF SALMONELLA VIRCHOW ST16 INFECTIONS LINKED TO CONSUMPTION OF MEAT PRODUCTS CONTAINING CHICKEN MEAT (30 MARCH 2023)

Cases' distribution

210 cases: 5 EU/EEA n=177; USA n=1; UK n=32


Exposure and interviews

FR: 79% reported consumption of kebab with chicken meat (24 cases interviewed)

DE: most recent case reported consumption of shawarma with chicken meat.

USA: the case reported purchase of eggs and chicken in Paris

WGS cluster analysis

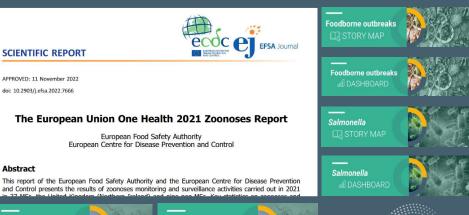
EFSA and **ECDC** outbreak assessment

A persistent outbreak of Salmonella Virchow ST16 has been ongoing in at least five EU/EEA countries

Based on the available information from case interviews, traceback investigations, and the WGS cluster analysis, **kebab meat products containing contaminated chicken meat are the likely vehicles of infections**, with contaminated chicken meat alone being another possible vehicle of infection.

In the absence of the identification of the batch numbers and any microbiological evidence, the source(s) of the infections and the point(s) of contamination of the consumed kebab products could not be established.

The WGS cluster analysis revealed that most of the matching isolates belonged to broiler and broiler-related environments, supporting the hypothesis of chicken meat as a vehicle of infections, and highlighting the circulation of the clone in EU.


New infections are likely to occur in the EU/EEA until further investigations are performed by public health and food safety authorities to identify the source(s) of the and the possible point(s) of contamination along the chicken meat production chain, including the primary production upstream lines. This will allow appropriate control measures to be implemented.

Thank you for your attention

Listeria monocytogenes

Campylobacter