Interim Summary Report EURL-Salmonella Proficiency Test Cluster Analysis 2022

W.F. Jacobs-Reitsma, R. E. Diddens, A.H.A.M. van Hoek, and K.A. Mooijman RIVM, Bilthoven, The Netherlands

20 July 2023 Z&O letter report 2023-0035

This investigation was co-funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the granting authority European Health and Digital Executive Agency (HaDEA). Neither the European Union nor the granting authority can be held responsible for them.

1. Introduction

This document provides an overview of the results as produced by the participants in the EURL-*Salmonella* Proficiency Test (PT) Typing 2022, concerning the optional part on Cluster Analysis (CA).

A total of 20 NRLs participated in the cluster analysis; all performed WGS analysis and five participants also performed MLVA analysis.

The evaluations of the individual laboratory results were sent to each of the participants separately. The full results will be reported in more detail in the final report on the EURL-*Salmonella* PT Typing 2022.

2. Salmonella strains for cluster analysis

A total of six *Salmonella* strains (22SCA01 – 22SCA06) in HI agar transport tubes were sent to the participants in the EURL-*Salmonella* PT Typing 2022, part CA. Background information on these "wet" strains is given in Table 1A. In addition, raw sequence data (fastq.gz files, md5 checksums) on another six *Salmonella* strains (22SCA11 – 22SCA16) were made available to the participants via a secure ftp server for "dry" evaluation (WGS only). Background information on the "dry" strains is given in Table 1B.

Strain code	Serovar	ST	Origin	MLVA-profile
22SCA01 ^{a)}	Enteritidis	11	Human	3-10-5-3-1
22SCA02 ^{c)}	Enteritidis	11	Human	3-10-4-4-1
22SCA03	Enteritidis	11	Human	2-9-7-4-2
22SCA04 ^{b)} REF	Enteritidis	11	Human	3-10-6-3-1
22SCA05 ^{a)}	Enteritidis	11	Human	3-10-5-3-1
22SCA06 b)	Enteritidis	11	Human	3-10-6-3-1

Table 1A. Background information on the "wet" Salmonella strains used for cluster analysis in 2022

a) Technical duplicates

b) Technical duplicates

c) Biological duplicate strain 21SCA08

Table 1B. Background information on the "dry" Salmonella strains used for cluster analysis in 2022 (WGS only)

Strain code	Serovar	ST	Origin
22SCA11 ^{c)}	Enteritidis	11	Human
22SCA12 ^{c)}	Enteritidis	11	Human
22SCA13*	Enteritidis	n.a.	Unknown
22SCA14	Enteritidis	11	Human
22SCA15 ^{d)}	Enteritidis	11	Human
22SCA16	Enteritidis	11	Human

c) Strain 21SCA08, raw data PT 2021 from 2 different participants

d) Biological duplicate strain 22SCA01

* S. Enteritidis contaminated with E. coli reads

n.a. not applicable (QC not passed)

Strains were selected by the EURL-*Salmonella* to be suitable for analysis by using either MLVA or WGS. In preparation of the PT 2021 on cluster analysis, a set of 15 human surveillance *Salmonella* strains were re-cultured from storage (2019) and submitted for MLVA and WGS analysis both directly and after sub-culturing for ten times. Re-cultured strains were stored both at minus 70°C and in HI transport tubes. Strains were re-cultured again on blood-agar plates from both types of storage in the summer of 2022 and submitted for WGS analysis.

Subsequently, six "wet" strains and six "dry" strains were selected for inclusion in the PT 2022 (also see Figure 1). Two sets of wet technical duplicates were included: strain 22SCA01 and strain 22SCA05 shipment tubes were both prepared from the same blood-agar plate containing strain 22SCA01; strain 22SCA04 and strain 22SCA06 shipment tubes were both prepared from the same blood-agar plate containing strain 22SCA04.

Cluster analysis could be performed up to the choice of the participant by MLVA and/or WGS, using their own routine method(s).

Like the year before, the PT Cluster Analysis 2022 was mimicking an outbreak situation, with a *Salmonella* Enteritidis ST11, MLVA type 3-10-6-3-1 as the reference strain (22SCA-REF). Raw WGS data of this strain (22SCA-REF_R1.fq.gz and 22SCA-REF_R2.fq.gz, as well as md5 checksums) were also made available through the secure ftp server.

For this particular PT 2022 situation, the cgMLST-based cluster definition (WGS) was set at maximum six allelic differences from the reference sequence. For MLVA, the cluster definition was set at no loci with a different number of repeats.

Participants were asked to analyse the six "wet" *Salmonella* strains (MLVA/WGS) and the six "dry" *Salmonella* strains (WGS only), and to report per strain whether a clustering match with the reference strain was found or not.

Evaluation (per methodology) of the participants' cluster analysis results was done by comparing the participants' results to the expected results in the outbreak investigation setting, as pre-defined by the EURL-*Salmonella* (Protocol EURL-*Salmonella* PT Typing 2022).

3. Evaluation of the cluster analysis results based on MLVA data

Five participants (Laboratory codes 1, 17, 19, 28, 33) submitted cluster analysis results based on MLVA data.

The allelic profiles as submitted by the participants are given in Annex 1. Laboratory 19 did not report the results in the expected format and therefore these results are regarded as deviating.

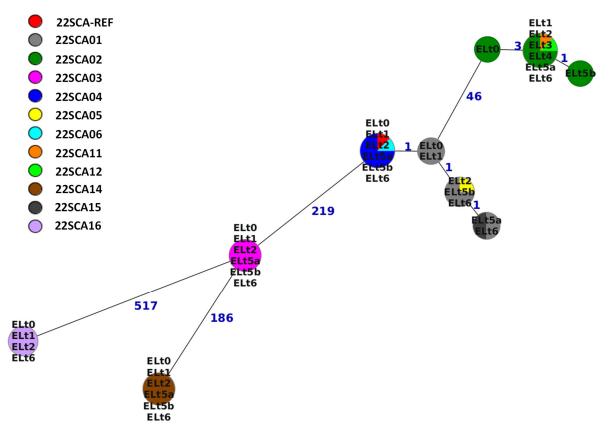
Participants were asked to report per strain (Table 2) whether or not a clustering match was found with the reference outbreak strain (22SCA-REF) in the EURL-*Salmonella* PT 2022: *Salmonella* Enteritidis ST11, MLVA type 3-10-6-3-1.

The MLVA cluster definition for the PT 2022 was set at no loci with a different number of repeats. Based on this cluster definition, MLVA-based results were expected to indicate strains 22SCA04 (reference strain) and 22SCA06 (technical duplicate of the reference strain) to be a clustering match with the reference outbreak strain.

Four participants reported the MLVA-based cluster analysis results completely as expected (Table 2).

The fifth participant reported the allelic profiles in a deviating format, therefore the evaluation of their results cannot be done according to the PT Typing 2022 Protocol.

	Strain code										
Labcode	22SCA01	22SCA02	22SCA03	22SCA04	22SCA05	22SCA06					
Expected	No	No	No	Yes	No	Yes					
1	No	No	No	Yes	No	Yes					
17	No	No	No	Yes	No	Yes					
19*	Yes	Yes	Yes	Yes*	Yes	Yes*					
28	No	No	No	Yes	No	Yes					
33	No	No	No	Yes	No	Yes					


Table 2. Expected cluster analysis results and the cluster analysis results as reported by the 5 MLVA participants

In blue: Deviation from the expected result.

*The allelic profiles were not reported in the expected format, therefore the evaluation of the cluster analysis results cannot be done according to the PT Typing 2022 Protocol.

4. Evaluation of the cluster analysis results based on WGS data

Twenty participants (Table 3) submitted a total of 26 cluster analysis results based on WGS data; four participants submitted both cgMLST-based and SNP-based data results, and one participant submitted two cgMLST-based and one SNP-based data analyses. Some details on the sequencing procedures as performed by the participants are given in Annex 2. WGS-based pre-test results as well as the PT 2022 results from the EURL-*Salmonella* are shown in Figure 1. Sequencing was performed in-house, on an Illumina NextSeq platform. Raw data were processed via an in-house developed Juno-assembly pipeline (https://rivm-bioinformatics.github.io/ids_bacteriology_man/juno-assembly.html), which includes the SPAdes 3.15.3 assembler. Cluster analysis was done in Ridom SeqSphere⁺, using the cgMLST Enterobase v2.0 scheme and visualised in a minimum spanning tree (MST, Figure 1). Stable and consistent cgMLST analysis result were obtained for both the minus 70°C-stored and the HI-tubes-stored strains (Figure 1, ELt5a and ELt5b). Subsequently, the "wet" strains selected to be included for the PT 2022 (Figure 1, ELt6) were freshly prepared from the minus 70°C stocks (2021).

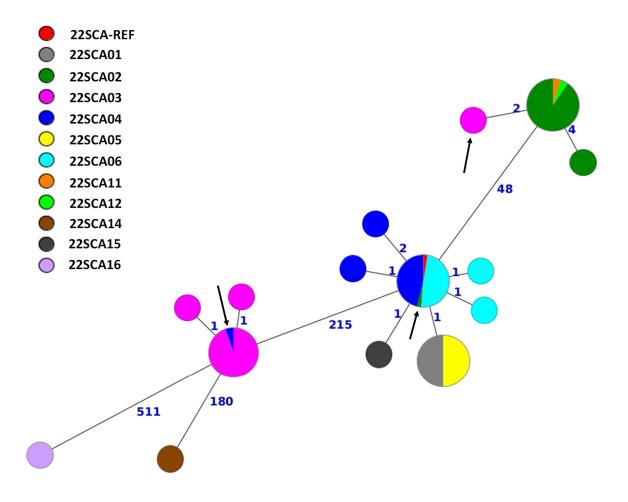


Figure 1. MST of the EURL-Salmonella *(EL) pre-tests and PT 2022 results, (RidomSeqSphere⁺, cgMLST (3002), pairwise ignoring missing values).*

- ELt0: Original WGS data from the stored human surveillance Salmonella strains (2019);
- ELt1: WGS data from initial pre-testing for PT 2021 (8 July 2021);
- ELt2: WGS data after ten times sub-culturing (blood-agar/BPW) for PT 2021 (17 August 2021);
- ELt3: PT 2021 data at the start of the PT (November 2021);
- ELt4: PT 2021 data at the end of the PT (February 2022);
- *ELt5a:* WGS data after one-year storage at minus 70°C (September 2022);
- ELt5b: WGS data after one-year storage in HI agar transport tubes (September 2022);
- ELt6: PT 2022 data at the start of the PT (November 2022).

Fourteen compressed paired-end fastq files (strains 22SCA11 - 22SCA16 plus 22SCA-REF) had to be downloaded for analysis from the secure ftp server. The md5 checksums for these files were available on the server as well (Annex 3). Participants were asked whether they checked the md5sum values after downloading, and 16 participants indicated that they did this. Participants were also asked to copy/paste in the result form "your md5 output for all your strains". Regrettably, this was not a very clear question, but 8 of 16 participants entered their md5 checksums for the files that they had to upload to the secure ftp server (for strains 22SCA01 - 22SCA06), which was inclined with this question. After downloading the raw data files from the participants at the EURL-*Salmonella*, this was checked to be correct, indicating that also this transfer of data via the secure ftp site went alright.

All participants' raw data (compressed fastq files) for the six "wet" strains (22SCA01 – 22SCA06) were successfully processed through the Juno-assembly pipeline as mentioned. The *de novo* assembled genomes (fasta files) were analysed in Ridom SeqSphere⁺, using the cgMLST Enterobase v2.0 and visualised in a MST, which also includes the "dry" strain data (22SCA-REF, 22SCA11 – 22SCA16) (Figure 2). Data per "wet" strain are given in Annex 4. Results for Laboratory 26 indicate a swap between their results for strains 22SCA02, 22SCA03, and 22SCA04.

Figure 2. MST of the strains from the participants' processed raw data plus the "dry" strain data (22SCA-REF, 22SCA11 – 22SCA16) (Ridom SeqSphere+, cgMLST (3002), pairwise ignoring missing values)

*Three arrows are indicating the swap between results for strains 22SCA02, 22SCA03, and 22SCA04.

Participants were asked to report per strain:

-whether the data passed their Quality Control (QC) criteria or not,

-whether a clustering match with the reference strain in the EURL-*Salmonella* PT Typing 2022 (22SCA-REF) was found or not.

Apart from the reference cluster, any further clusters could be reported optionally.

Strain 22SCA13 was expected not to pass the QC of the participants, because the data files of this strain also contained numerous *E. coli* reads. The PT Typing 2022 Protocol indicated to exclude strains from the cluster analysis if the data did not pass the QC. Strain 22SCA13 was reported to be excluded from cluster analysis by 17 of the 20 participants, although it was still included in the distance matrix of one of their submissions. Reasons for (not) excluding strain 22SCA13 are given in Annex 5.

Annex 6 shows per submission the participants' distance matrix data for their comparison of the 22SCA-REF with the final 11 strains (strain 22SCA13 expected to be excluded from the cluster analysis).

The cluster definition for this particular PT Typing 2022 situation was set at maximum allelic differences from the reference sequence. Based on this (cgMLST-based) cluster definition, WGS-based results were expected to indicate the "wet" strains 22SCA04 (reference strain), 22SCA06 (technical duplicate of the reference strain), 22SCA01 (clustering with the reference strain), 22SCA05 (technical duplicate of strain 22SCA01) and the "dry" strain 22SCA15 (ELt5a data of strain 22SCA01) to be a clustering match with the provided reference outbreak strain 22SCA-REF data (also see Figure 1).

Nineteen of the 26 submissions (five participants with multiple submissions) reported the WGS-based cluster analysis results completely as expected (Table 3).

	Strain code											
Labcode-method	22	22	22	22	22	22	22	22	22	22	22	22
Labcoue-methou	SCA01	SCA02	SCA03	SCA04	SCA05	SCA06	SCA11	SCA012	SCA13	SCA14	SCA15	SCA16
Expected	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
1-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
2-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
3-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
7-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
8-SNPr	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
8-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
9-SNPr	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
10-SNPr	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
14-cgMLST	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
14-SNPr	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
16-SNPr	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
17-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
19-cgMLST	Yes	No	Yes	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
23-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
24-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
26-SNPa	Yes	Yes	No	No	Yes	Yes	No	No	n.a.	No	Yes	No
27-cgMLST1	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
27-cgMLST2	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
27-SNPr	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
28-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	No	No	Yes	No
28-SNPr	Yes	No	No	Yes	Yes	Yes	No	No	No	No	Yes	No
29-SNPr	Yes	No	No	Yes	Yes	Yes	No	No	No	No	Yes	No
30-SNPa	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
30-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
32-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No
33-cgMLST	Yes	No	No	Yes	Yes	Yes	No	No	n.a.	No	Yes	No

Table 3. Expected cluster analysis results and the cluster analysis results as reported per data analysis method by the 20 WGS participants

In blue:

Deviation from the expected result.

Technical duplicates 22SCA01 and 22SCA05 were reported within one cluster in all 26 submissions. Technical duplicates 22SCA04 and 22SCA06 were reported within one cluster in all but one of the submissions.

Some observations on the interpretation of Table 3 are given below:

Laboratory 14: there may have been a misunderstanding in the way to report the results of the cluster analysis. Based on the submitted distance matrix, and the analyses shown in Figure 2/Annex 4, data are in line with the expected results except for strain 22SCA13 (Annex 5 and 6).

Laboratory 19: this deviation may have been a mistake in filling the result form, because this answer is not supported by the distance matrix that was submitted, nor by Figure 2/Annex 4. Laboratory 26: there may have been a swap of strain numberings: Data of strain 22SCA02 reported as strain 22SCA04; Data of strain 22SCA03 reported as strain 22SCA04; Data of strain 22SCA04 reported as strain 22SCA02. Based on the submitted distance matrix (with the wrong numbering), and the analysis shown in Figure 2/Annex4, data seem to be in line with the expected results.

Laboratory 28 and laboratory 29: strain 22SCA13 was expected to be excluded from the cluster analysis (also see Annex 5 and 6).

Apart from the cluster with the reference strain, a second cluster was optionally to be identified: 22SCA02, 22SCA11, and 22SCA12. This second cluster was reported in 21 of the 26 submissions, three of these were deviating from the expected results. Laboratory 26 reported 22SCA11 and 22SCA12 to be a second cluster, without 22SCA02. Laboratory 29 reported the second cluster correctly, but also considered the four remaining strains as a third cluster, "although quite divergent". Laboratory 33 reported the second cluster correctly, but reported strains 22SCA04 and 22SCA14 as a third cluster.

List of abbreviations

BPW	Buffered peptone Water
CA	Cluster Analysis
cgMLST	core genome Multilocus Sequence Typing
EFSA	European Food Safety Authority
EL	EURL-Salmonella Laboratory
EU	European Union
EURL-Salmonella	European Union Reference Laboratory for Salmonella
HI agar	Hearth Infusion ager (in transport tubes)
MLVA	Multiple-Locus Variable number of tandem repeat Analysis
MST	Minimum Spanning Tree
n.a.	not applicable
NRLs-Salmonella	National Reference Laboratories for Salmonella
PT	Proficiency Test
QC	Quality Control
REF	Reference
RIVM	National Institute for Public Health and the Environment
SNPa	assembly-based Single-Nucleotide Polymorphism data
SNPr	reference-based Single-Nucleotide Polymorphism data
ST	Sequence Type
WGS	Whole Genome Sequencing

References

European Centre for Disease Prevention and Control. Laboratory standard operating procedure for multiple-locus variable-number tandem repeat analysis of *Salmonella enterica* serotype Enteritidis. Stockholm:ECDC; 2016. doi 10.2900/973540. Available online: https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Salmonella-Enteritidis-Laboratory-standard-operating-procedure.pdf

Acknowledgements

We would like to thank the IDS-bioinformatics team for their valuable help with the Junoassembly pipeline.

Contact for this PT

Wilma Jacobs E-mail: <u>wilma.jacobs@rivm.nl</u> Mobile: +31 6 3114 2419

EURL-Salmonella website: www.eurlsalmonella.eu

National Institute for Public Health and the Environment (RIVM) Centre for Zoonosis and Environmental microbiology (Z&O/ internal mailbox 63) Antonie van Leeuwenhoeklaan 9 P.O. Box 1, 3720 BA Bilthoven, The Netherlands

Annex 1. Expected and reported MLVA results for all five participants

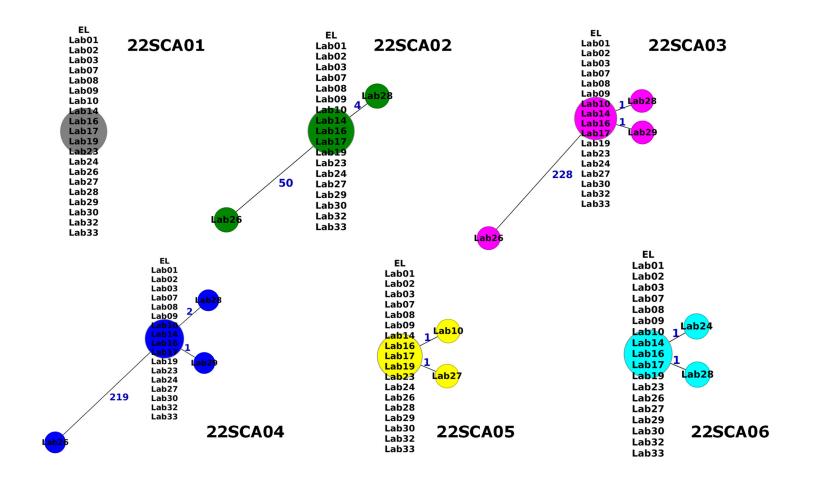
Loci were asked to be reported in the order: SENTR7-SENTR5-SENTR6-SENTR4-SE-3.

	Strain code										
Lab code	22SCA01	22SCA02	22SCA03	22SCA04	22SCA05	22SCA06					
Expected	3-10-5-3-1	3-10-4-4-1	2-9-7-4-2	3-10-6-3-1	3-10-5-3-1	3-10-6-3-1					
1	3-10-5-3-1	3-10-4-4-1	2-9-7-4-2	3-10-6-3-1	3-10-5-3-1	3-10-6-3-1					
17	3-10-5-3-1	3-10-4-4-1	2-9-7-4-2	3-10-6-3-1	3-10-5-3-1	3-10-6-3-1					
19	5-2-3-7-6-6-11	5-2-3-7-6-6-11	5-2-3-7-6-6-11	5-2-3-7-6-6-11	5-2-3-7-6-6-11	5-2-3-7-6-6-11					
28	3-10-5-3-1	3-10-4-4-1	2-9-7-4-2	3-10-6-3-1	3-10-5-3-1	3-10-6-3-1					
33	3-10-5-3-1	3-10-4-4-1	2-9-7-4-2	3-10-6-3-1	3-10-5-3-1	3-10-6-3-1					

In blue: Deviation from the expected result.

Labcode	Wet lab ^{a)}	WGS platform used	Data analysis	Tool for analysis	Method for cluster analysis
1	In-In-In	Illumina MiSeq	cgMLST-based	Ridom SeqSphere	Minimum Spanning Tree (MST)
2	In-In-In	Illumina NextSeq	cgMLST-based	Ridom SeqSphere	Minimum Spanning Tree (MST)
3	In-In-In	Illumina MiSeq	cgMLST-based	BioNumerics	Minimum Spanning Tree (MST)
7	In-In-In	Illumina MiSeq	cgMLST-based	linux command line	Neighbor joining (NJ)
8-cgMLST	In-Out-Out	Illumina NovaSeq	cgMLST-based	Ridom SeqSphere	Minimum Spanning Tree (MST)
8-SNPr	In-Out-Out	Illumina NovaSeq	SNP-based - reference-based	SNIPPY	Maximum likelihood (ML)
9	In-In-In	Illumina MiSeq	SNP-based - reference-based	Python script	Minimum Spanning Tree (MST)
10	In-In-Out	Illumina NextSeq	SNP-based - reference-based	https://cge.food.dtu.dk/services/CSIPhylogeny/	Maximum likelihood (ML)
14-cgMLST	In-In-In	Illumina MiSeq	cgMLST-based	galaxy.sciensano	Maximum likelihood (ML)
14-SNPr	In-In-In	Illumina MiSeq	SNP-based - reference-based	Galaxy Sciensano	Maximum likelihood (ML)
16	In-In-In	Illumina MiSeq	SNP-based - reference-based	CSIPhylogeny (https://cge.food.dtu.dk/services/CSIPhylogeny/)	Maximum likelihood (ML)
17	In-In-In	Illumina MiSeq	cgMLST-based	in-house galaxy	MSTreeV2
19	In-In-In	Illumina Miniseq	cgMLST-based	Ridom SeqSphere	Minimum Spanning Tree (MST)
23	In-In-In	Illumina NextSeq 2000	cgMLST-based	Ridom SeqSphere	Minimum Spanning Tree (MST)
24	In-In-In	Illumina MiSeq	cgMLST-based	Ridom SeqSphere	Minimum Spanning Tree (MST)
26	In-In-In	Illumina MiSeq	SNP-based - assembly-based	CSIPhylogeny 1.4	Maximum likelihood (ML)
27-cgMLST1	In-In-In	Illumina NextSeq	cgMLST-based	inhouse chewieSnake pipeline (Enterobase scheme)	single linkage hierarchical clustering
27-cgMLST2	In-In-In	Illumina NextSeq	cgMLST-based	Ridom SeqSphere+Enterobase scheme	single linkage hierarchical clustering
27-SNPr	In-In-In	Illumina NextSeq	SNP-based - reference-based	SNP-analysis using SnippySnake pipeline	single linkage hierarchical clustering
28-cgMLST	In-In-In	Illumina MiSeq	cgMLST-based	PyMLST v1	Minimum Spanning Tree (MST)
28-SNPr	In-In-In	Illumina MiSeq	SNP-based - reference-based	BWA, bcftools, RAxML	Maximum likelihood (ML)
29	In-In-In	Illumina MiSeq	SNP-based - reference-based	Snippy, Snapper DB, Gubbins, RAxML, iToL	ML and SNP address analysis
30-cgMLST	In-In-In	Illumina MiSeq	cgMLST-based	chewBBACA using the scheme from Enterobase	Calculated AD based on output chewBBACA
30-SNPa	In-In-In	Illumina MiSeq	SNP-based - assembly-based	In house pipeline ^{b)}	Maximum likelihood (ML)
32	In-In-In	MiniSeq	cgMLST-based	Ridom SeqSphere	Distance matrrix only
33	In-In-In	Illumina MiSeq	cgMLST-based	ChewBBaCa	Minimum Spanning Tree (MST)
EURL-Salm	In-In-In	Illumina NextSeq	cgMLST-based	Ridom SeqSphere	Minimum Spanning Tree (MST)

Annex 2. Sequencing details as reported by the 20 WGS participants


a) Wet lab preparations: DNA extraction, Library preparation, sequencing. In: In-house, Out: Outsourced.

b) Based on parSNP, Gubbins, creating a ML tree in IQ Tree, creating a SNP distance matrix with snp-dists.

Annex 3. Md5 checksums of the 14 files that had to be downloaded from the secure ftp server for further analysis

Annex 4. MSTs of each strain, using all participants' processed raw data (Ridom SeqSphere+, cgMLST (3002), pairwise ignoring missing values)

Results for Laboratory 26 indicate a swap between their results for strains 22SCA02, 22SCA03, and 22SCA04.

	Strain 22SCA13	
Labcode	excluded from	Reason(s) not passing QC
	cluster analysis	
1	Yes	Contamination Check Result: Potential contamination by second species above 10% detected: Escherichia coli; genome size too big
1	103	(12.7 MB); strain excluded for MST and matrix
2	Yes	total length too high, # contigs too high, GC% too low, contamination too high: mostly E. coli reads
3	Yes	Failed on assembly size, contig number and N50 values. Contamination confirmed using Kmer Finder.
7	Yes	Contamination with E.coli, number of contigs over 3400, total lenght is oversize
8	Yes	Contamination by Escherichia 42.26%: coli(39.96%) - Salmonella 37.83%: enterica(37.57%)
9	Yes	Contamination and failed assembly
10	Yes	purity of culture; CG%; No. contigs; genome size
16	Yes	Total length 10,7Mbp, GC% 50,9, 3490 contigs, contamination confirmed by KmerFinder
17	Yes	contaminated with E. coli, low N50, total length 2x, number of contigs too high, <90% MLST loci detected
19	Yes	final assembly lenght too large
23	Yes	Contaminated with E. coli, assembly size too big for Salmonella
24	Yes	Contamination with E. coli
26	Yes	N. contigs >500; Total length higher than expected; N50<15000
27	Yes	Fail: Total length 12,718,480 bp; Read Fraction Majority Genus 0.488; Contam SNVs 2508 (inter and intra contamination); Warning:
27	Tes	# Contigs 5,602; N50 11,563; Single copy orthologs 0.500; Duplication Rate 1.415; GC 51.07
30	Yes	Contamination with other species (E. coli)
32	Yes	Potential contamination by second species above 10% detected: Escherichia coli
33	Yes	contamination status = True
14	No	
28	No*	Sample 22SCA13 was contaminated (only about 35% of the reads were classified as belonging to the Salmonella taxon). We select
20		those reads removing that way the contamination. Thus, we continue the analysis just with the reads classified as Salmonella.
29	No	

In blue: Deviation from the expected result.

*The PT Typing 2022 Protocol indicated to exclude strains from the cluster analysis if the data did not pass the QC, therefore the approach by Laboratory 28 was considered as deviating.

							Strain code	9					
	22	22	22	22	22	22	22	22	22	22	22	22	22
Labcode-method	SCA-REF	SCA01	SCA02	SCA03	SCA04	SCA05	SCA06	SCA11	SCA12	SCA13*	SCA14	SCA15	SCA16
1-cgMLST	0	2	50	218	0	2	0	50	50		249	2	544
2-cgMLST	0	2	50	220	0	2	0	50	50		251	3	546
3-cgMLST	0	1	51	225	0	1	0	51	51		259	1	561
7-cgMLST	0	4	54	223	1	4	1	54	54		251	4	552
8-cgMLST	0	2	50	218	0	2	0	50	50		250	2	544
14-cgMLST	0	6	103	411	0	6	0	103	103	414	472	6	1220
17-cgMLST	0	6	58	229	1	6	1	58	58		262	5	567
19-cgMLST	0	3	51	219	1	3	1	51	52		250	3	545
23-cgMLST	0	2	50	220	0	2	0	50	51		251	2	546
24-cgMLST	0	2	49	218	0	2	0	50	50		249	2	543
27-cgMLST1	0	4	53	220	1	4	1	53	54	213 ^{a)}	250	4	544
27-cgMLST2	0	2	51	220	0	3	0	51	51		251	2	546
28-cgMLST	0	3	53	212	2	5	1	48	49	232 ^{b)}	246	3	537
30-cgMLST		4			1	4	1		54			5	
32-cgMLST	0	2	50	219	0	2	0	50	50		248	2	545
33-cgMLST	0	4	64	246	0	4	0	64	65		270	4	606
EURL-Salm-cgMLST	0	2	50	220	0	2	0	50	50		251	3	546
26-SNPa	0	7	1	126	455	9	3	108	110		521	9	1413
30-SNPa	0	10	111	453	4	10	4	111	109		516	11	1220
8-SNPr	0	6	123	501	0	6	0	117	118		596	6	1321
9-SNPr	0	6	98	447	0	6	0	98	98		500	6	1223
10-SNPr	0	6	101	443	0	6	0	101	101		506	6	1447
14-SNPr	0	6	109	449	0	6	0	109	109	468	504	6	1327
16-SNPr	0	9	111	451	3	9	2	109	112	403 ^{c)}	520	8	1420
27-SNPr	0	6	108	479	0	6	0	108	108		531	6	1683
28-SNPr	0	7	112	495	2	7	1	114	112	516 ^{b)}	636	6	1765
29-SNPr	0	6	102	418	1	6	1	102	102	418	461	6	1127

Annex 6. Per submission, the participants' distance matrix data for their comparison to the 22SCA-REF with the 11 (or 12) strains.

In blue: Deviation from the expected result.

* Strain 22SCA13 was expected not to be included in the cluster analysis (due to not passing QC).

a) 22SCA13 QC failed and will not be included for reporting. However we checked the allelic differences for own interests.

b) See Annex 5.

c) Reported to be excluded from the cluster analysis.