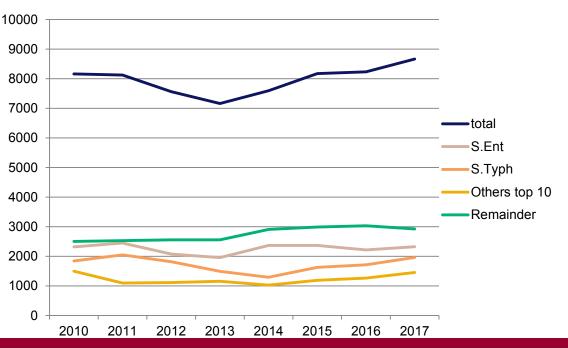


Salmonella contamination of (imported) fresh edible leaves


Dr Marie Anne Chattaway Pathogen Lead for Salmonella Reference Service Gastrointestinal Bacteria Reference Service

Top ten Salmonella serovars

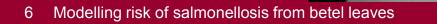
63,691 cases of salmonellosis in England 2010-17 where cultures were submitted for characterisation,

- 41,348 (65%) were due to the top 10 S.enterica serovars,
- S. Enteritidis, S.Typhimurium,
- S. Newport, S.Infantis,
- S.Virchow, S.Kentucky,
- S. Agona, S. Stanley,
- S. Java, and S. Bareilly.

Cases and outbreaks of salmonellosis

			All c	ases				
Year	2010	2011	2012	2013	2014	2015	2016	2017
Total number of								
cases	8163	8127	7563	7161	7595	8177	8236	8669
S.Enteritidis	2320	2447	2079	1958	2366	2370	2219	2324
S.Typhimurium	1844	2051	1816	1493	1292	1627	1715	1964
Other top 8								
serovars	1496	1099	1112	1155	1029	1192	1266	1456
All other								
serovars	2503	2530	2556	2555	2908	2988	3036	2925
	Numbers	of cases	in outbre	aks (num	bers of o	utbreaks)		
		547	176				556	
All cases	119 (5)	(17)	(14)	774 (9)	367 (9)	361 (9)	(11)	128 (8)
		357						
S.Enteritidis	33 (3)	(11)	67 (6)	34 (2)	314 (7)	212 (6)	480 (8)	22 (3)
S.Typhimurium	86 (2)	190 (6)	60 (6)	169 (5)	46 (2)	31 (1)		93 (3)
Other serovars			49 (2)	471 (2)	7 (1)	118 (2)	76 (3)	13 (2)

How much contamination do we see in imported leaves, are they harbouring antimicrobial reistant genes and are they causing outbreaks?


Betel (paan/pan) leaves (*Piper betle* L.) traditional product that certain South-eastern Asian populations chew after meals

Imported into the EU particularly to UK and Germany but also to Italy, France, The Netherlands and Portugal

Betel leaves, initial observations: August 2011

EHO sampled betel leaves as part of an inspection of an ethnic food retailer in Birmingham

Samples tested by FW&E Laboratory in Birmingham

Salmonella enterica serovar Augustenborg isolated

Further sampling at retail and wholesale detected Salmonella in 11 out of 64 samples

- 11 (24%) of 45 samples from Bangladesh, 6 Salmonella serovars
- 1 (7%) of 15 samples from India

Two consignments tested from Border Inspection Post at Birmingham Airport, both contaminated with *Salmonella*

England

Salmonella spp. contamination of betel leaves Public Health collected at Border Inspection Posts at **English** airports

Year	Number of samples								
	Total	Salmonella spp. detected							
		(%)							
2011	539	198 (37%)							
2012	515	120 (23%)							
Total	1054	318 (30%)							

Collected by Port Health Officers at airports on entry into the EU

Bublic Health England Salmonella spp. contamination of betel leaves collected at retail, wholesale and catering

Year	Number of samples							
	Total	Salmonella spp. detected						
		(%)						
2011	67	17 (25%)						
2012	0	•						

Collected by Environmental Health Officers

Assessment in mid-2012

First ~200 isolates identified

- 19% Salmonella Virchow
- 10% each Salmonella Brunei, Salmonella Newport
- Additional 41 serovars of Salmonella were identified

A comparison with isolates from betel leaves to those from human cases did not identify betel leafconsumption attributable morbidity in the UK population

Actions by Risk Managers Public Health

2011 after initial isolation of S.Augustenborg, FSA informed who issued RASFFs, discussions held between the EU Commission and the Bangladeshi and Indian High Commissions to ascertain what is being done to reduce contamination in the country of origin

2014 EU Commission implemented a temporary suspension of imported betel leaves originating or consigned by Bangladesh (Decision 2014/88/EU) which was extended in June 2015 (Commission Implementing Decision 2014/510/EU) and then to June 2018 and then to June 2020 (Commission Implementing Decision 2018/935).

2014 Betel leaves from India and Thailand were subjected to an increased level of official control at the designated point of (Commission Implementing Regulation (EU) 323/2014) and this continued for India in September 2015 (Commission Implementing Regulation (EU) 2015/1607).

2016 control of betel leaves from India was extended requiring that consignments be accompanied by results of sampling and analysis by the competent authorities in India for the absence of Salmonella (Commission Implementing Regulation (EU) 2016/166).

England

EU import prohibition for products from Bangladesh, but...

2017,

- 11 (14%) out of 77
- sampled on retail sale
- were from Bangladesh,
- Salmonella detected in 4 (36%)

Bangladesh betel leaves on sale in London April 2018

Salmonella spp. contamination of betel leaves Public Health Collected at Border Inspection Posts in four England **English airports**

Year	Colle	ected at Borde	Samples c	ollected at			
	Number of samples		Number of c	onsignments	retail, wholesale or		
					catering		
	Total	Salmonella	Total	Salmonella	Total	Salmonella	
		spp.		spp.		spp. detected (%)	
		detected (%)		detected (%)			
2011	539	198 (37%)	108	83 (77%)	67	17 (25%)	
2012	515	120 (23%)	103	62 (60%)	0	-	
2013	481	78 (16%)	97	42 (43%)	11	1 (9%)	
2014	145	16 (11%)	24	8 (33%)	42	1 (2%)	
2015	116	24 (21%)	19	9 (47%)	22	3 (14%)	
2016	78	19 (24%)	21	10 (77%)	1	0	
2017	16	0	6	0	77	11 (14%)	
Total	1890	455 (24%)	378	214 (57%)	220	33 (15%)	

Salmonella spp. contamination of betel leaves Public Health collected at Border Inspection Posts England

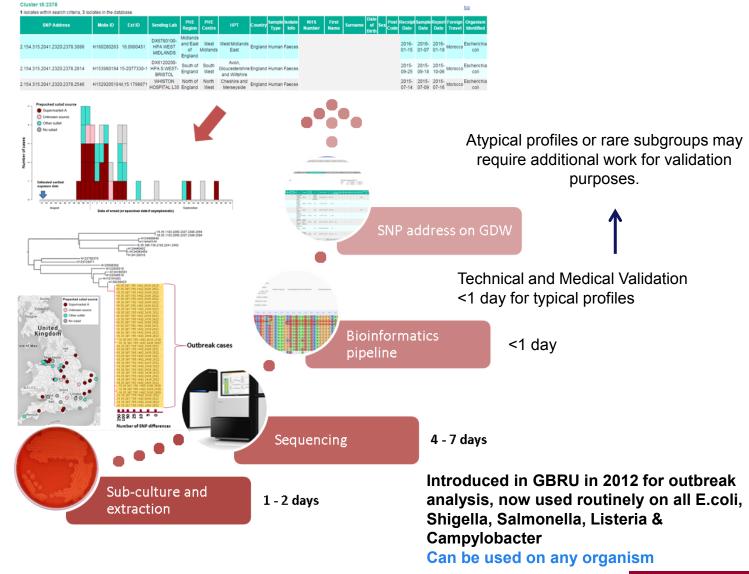
Year	Number o	f samples	Number of consignments			
	Total	Salmonella spp.	Total	Salmonella		
		detected (%)		spp. detected		
				(%)		
Bangladesh	1064	278 (26%)	207	133 (64%)		
India	415	70 (17%)	82	38 (46%)		
Malaysia	65	17 (26%)	17	8 (47%)		
Nepal	5	1 (20%)	1	1 (100%)		
Sri Lanka	23	2 (9%)	6	2 (33%)		
Thailand	135	23 (17%)	30	10 (38%)		
Not known	183	64 (35%)	35	60 (63%)		

Characterisation Salmonella from Border Inspection Posts

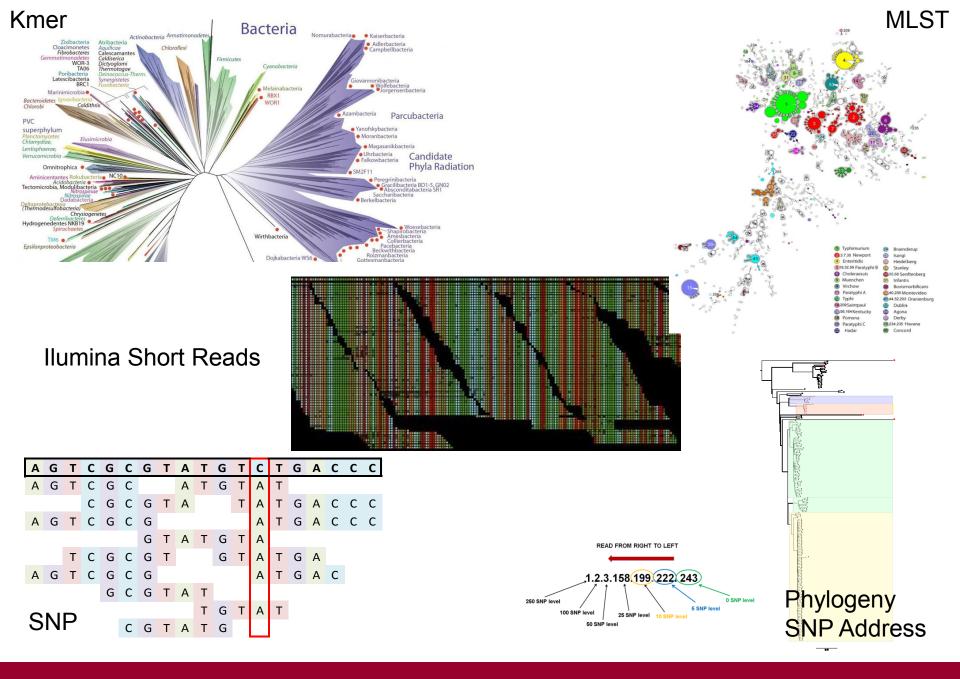
Where multiple cultures from the same sample or consignment were characterised, only one representative isolate per serovar per consignment has been included

332 representative isolates

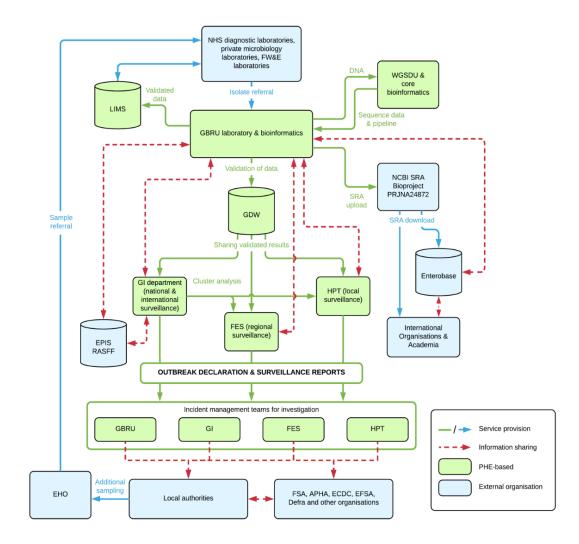
44 S.enterica subspecies I serovars identified,


plus un-named, Salmonella di arizonae, Salmonella salamae

- 17% Salmonella Virchow
- 10% Salmonella Java
- 8% Salmonella enterica (un-named)
- 7% Salmonella Brunei
- 7% Salmonella Litchfield
- 6% Salmonella Newport


WGS Typing and antimicrobial resistance of Salmonella from leaves

WGS Overview



Public Health

England

Overview of service provision and information sharing of WGS in UK

Submission of Salmonella

Salmonella detected in 488 samples from leaves since 2011

At least one *Salmonella* culture was submitted to GBRU from 475 (97%) of the samples

- 420 (89%), conventional serotyping (2011-13)
- 55 (11%) whole genome sequencing since 2014

No outbreaks linked or putatively linked to betel leaves were detected

Isolates from two sporadic human cases matching at ≤5 SNP level with betel leaf isolates

Salmonella

All 44 *S. enterica* isolates analysed and SNPs established

>5 SNPs differences with isolated from two human cases were identified, both in 2017:

1 S. Newport and S. Bareilly (betel leaf from

Bangladesh)

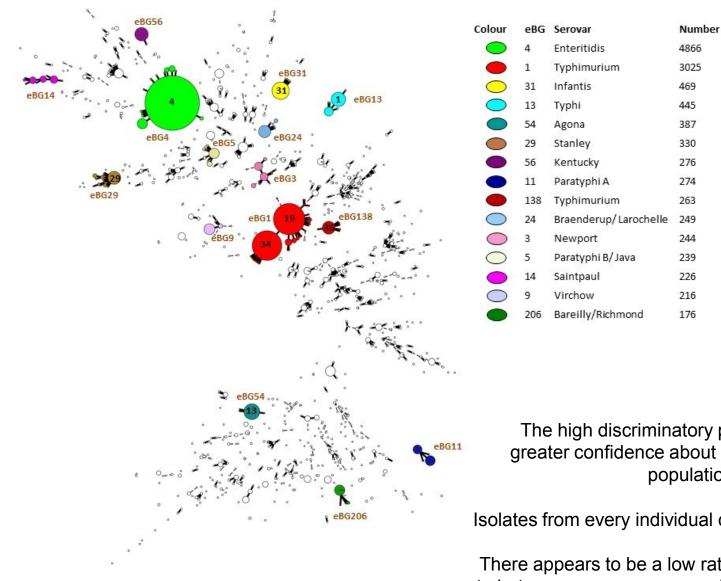
Betel leaves (n = 11)						
5	Salmonella Newport					
3	Salmonella Bareilly					
1	Salmonella Hvittingfoss					
1	Salmonella Lichfield					
1	Salmonella Typhimurium					

Curry leaves (n = 31)

<u>Curry leav</u>	$e_{5}(11 - 51)$
1	Salmonella Aberdeen
1	Salmonella Arizonae
1	Salmonella Bareilly
1	Salmonella Cerro
3	Salmonella Fulica
1	Salmonella Guildford
2	Salmonella Hvittingfoss
1	Salmonella Javiana
1	Salmonella Kasenyi
1	Salmonella Kentucky
1	Salmonella Morehead
1	Salmonella Mount-pleasant
1	Salmonella Newport
2	Salmonella Rubislaw
3	Salmonella Stanleyville
2	Salmonella Typhimurium
1	Salmonella Umbilo
4	Salmonella Uzaramo
3	Salmonella Weltevreden

Banana leaves (n = 1)						
1 Salmonella Virchow						
Other leaves (n = 1)						
1	Salmonella Poona					

Public Health England


Two sporadic human cases

Patient 1. 74 year-old female of Asian origin in the North West

- S.Bareilly (ST 203) isolated from the faeces in August 2015
- S.Bareilly (ST 203) matched at the 0-SNP level to an isolate from betel leaves, country of origin not known
- Sampled in June 2015 from a retail establishment from the same region <18 miles from patient's home address

Patient 2. 44 year old male of East Asian origin in

- S.Newport (ST 31) isolated from the faeces in October 2017
- S.Newport (ST 31) matched at the <5-SNP level to an isolate from betel leaves from Bangladesh
- Betel leaves collected from retail sale in July 2017 from a different region to the patient's home address

Conclusions

The high discriminatory power of WGS provides greater confidence about a highly heterogeneous population structure - see figure

Isolates from every individual consignment is different

There appears to be a low rate of transmission – due to heterogenous serovars and under reporting of mild illness?

Detecting outbreaks using Enterobase

Public Health England

Curry leaves

Banana leaves

interoBas	se	The		Dell'on	
Salmonella					
Species Home		Data ▽ View ▽	Workspac	MLST Query	Rows T
🖋 Tasks	<	Uberstrain ø	~	Scheme: cgMLST V2 + HierCC V	dit Mode: erovar e
1 Upload Reads					
ሂ Search Strains				Search On Allele	
Q Find ST(s)					
🌜 Curate Strains				Search On ST ST: 3399 Max Number MisMatches: 20	
Show My Jobs					
📽 My Buddies				Cancel Submit	
→ Locus Search					

Pandan leaves

La Download Schemes

Betel leaves

Results - Transmission

Leaf type	Serovar	Country of	Date	Allele (ST)	Enterobase re	sults:		UC
		origin		number	Source	Country	Date	Allele difference
Betel	Newport	Bangladesh	13/06/2017	106938	Human	UK	04/10/2017	1
Betel	Bareilly	Unknown	17/07/2015	119886	Human	UK	01/06/2015	12
Curry	Cerro	Unknown	09/11/2017	3399	Human	UK	18/11/2017	1
Curry	Stanleyville	Unknown	09/08/2017	106975	Human	UK	26/08/2017	0
Curry	Newport	Kenya	11/02/2014	27995	Human (n=2)	UK	2014	10, 11
				Human (n=4)	UK	2015	9, 10, 13	
					Human	UK	2016	6
					Human (n=9)	UK	2017	9 to 14
					Human (n=2)	UK	2018	8, 12
					Human	Ireland	2017	9
					Food	Uganda	2014	13
					Poultry	Uganda	2014	8
					Unknown	Kenya	2012	9
					Unknown	Unknown	2017	12
Curry	Agona	Pakistan	06/03/2013	21224	Human (n=9)	UK	2013	0 to 3
					Human (n=2)	UK	2014	4, 9
					Human (n=5)	UK	2015	6 to 10
					Human (n=5)	UK	2016	4 to 15
					Human	Canada	2016	2
					Human	Australia	2017	5
					Human	US	2015	11
					Unknown	Ethiopia	2017	10

Results - Antibiotic resistance

• Müller-Hinton agar dilution method and WGS (genefinder)

Leaf isolates

Leaf type	Serovar	No. of isolates	Country of origin		Resistant to:						% MDR isolates		
				AMP	AZM	CHL	NAL	SMX	TCY	ТМР	AMX	SXT	
Curry	Agona	1	Pakistan					1	1	1		1	100
Curry	Weltevreden	1	Unknown	1	1	1		1	1	1	1	1	100
Curry	Weltevreden	1	India				1						0

Public Health

England

LUCI

Antibiotic class	Resistance gene	Number		
Chloramphenicol	catA-2[v]	1		
Fluoroquinolones	qnrS-1	1		
	gyrA_SET[87:D-N]	1		
Macrolides	mph-(A)	1		
Trimethoprim	dfrA-5	1		
	dfrA-12	1		
Tetracyclines	tet(A)-1[v]	2		
	tet(M)[v]	1		
Sulphonamides	sul-1[v]	2		
	sul-3	1		

AMP, ampicillin; AZM, azithromycin, CHL, chloramphenicol; NAL, nalidixic acid; SMX, sulfamethoxazole; TCY, tetracycline; TMP, trimethoprim; AMX, amoxicillin; SXT, trimethoprim-sulfamethoxazole

Conclusion

- Eight (26.7%) out of 30 serovars from imported leaves and were in the top 10 NTS serovars reported in England and Wales in 2016
- Three (2.6%) leaf isolates were resistant, two (1.7%) MDR. No genotypic or phenotypic resistance to ertapenem or colistin
- Eight (7%) of the leaf isolates were associated with clinical cases and other possible niches
- **Importance:** due to international trade and the mass distribution of food, AMR Salmonella and Salmonella serovars considered rare can be imported into the UK and be associated with clinical cases or outbreaks

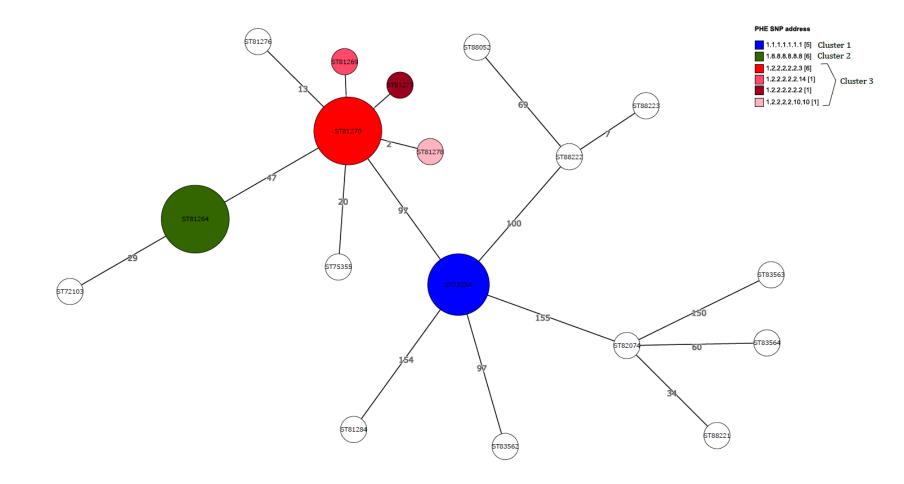
Are we seeing outbreaks from imported produce such as leaves, herbs, spices?

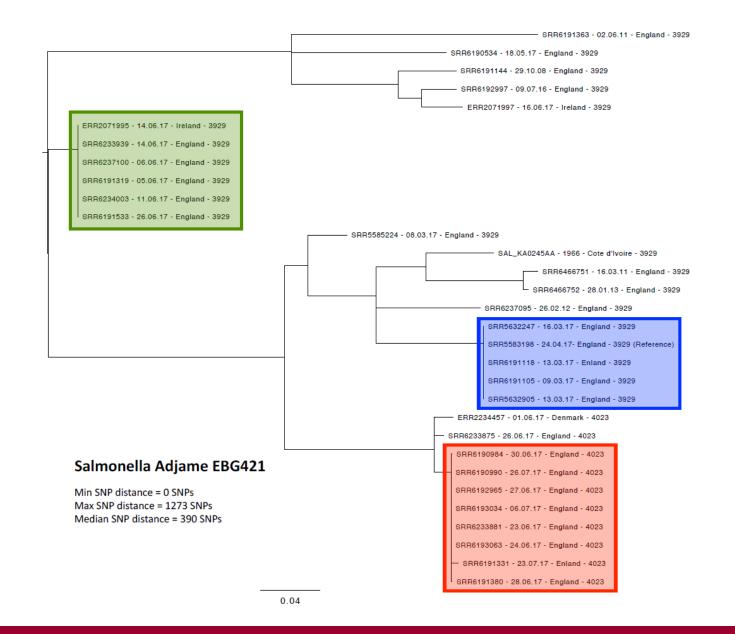
Atypical and rare outbreak of Salmonella Adjame

SNP address: Heterogenus

Outbreak background

•In August 2017, an increase in the number of *S*. Adjame isolates was reported initially


•An outbreak case was defined as a person resident in England with a clinical sample from 01 June 2017 to 27 July 2017 from which *S*. Adjame was isolated.


•Trawling questionnaires were completed looking at food exposures

•An (Epidemic Intelligence Information System) EPIS urgent enquiry was posted to ascertain if there had been and *S*. Adjame cases recently in Europe

•SNP typing was not initially available and GBRU performed cgMLST via the publically available database - Enterobase.

cgMLST analysis showed a large diversity of strain with 3 main clusters

- This was the first reported outbreak of *S.* Adjame described since its isolation in 1966
- While the cases of S. Adjame were linked epidemiological in time/person/place, WGS showed marked heterogeneity indicating a multi-strain outbreak, atypical of Salmonella enterica outbreaks PHE usually investigates
- Although imported produce, most likely leaves, herbs or spices were suspected vehicles, there was only descriptive epidemiological evidence supporting this. Handful of European cases
- it is likely that the vehicle of infection was imported from an area outside the EU where the strain is persistently present in a source environment or host population where strains have had the time to diversify and sources such as sewage would contain multiple genetically diverse strains.
- The interpretation of genomic analysis in regards to *Salmonella enterica* outbreak investigations needs to be adaptable to the particular circumstances of the outbreak in terms of case definition.
- cgMLST was comparable to SNP for cluster detection in this outbreak and is a potential method for outbreak comparisons but further validation is required.

Large outbreak of multiple gastrointestinal pathogens associated with fresh curry leaves in North East England, 2013.

Waldram A¹, Lawler J², Jenkins C³, Collins J⁴, Payne M⁴, Aird H⁵, Swindlehurst M⁵, Adak GK⁶, Grant K³, Ready D³, Gorton R¹, Foster K².

Author information

Abstract

A total of 592 people reported gastrointestinal illness following attendance East England in February/March 2013. Epidemiological, microbiological an source and prevent further cases. Several epidemiological analyses were (re-capture to estimate the true burden of cases. Indistinguishable isolates (on fresh curry leaves used in one of the accompaniments served at the evi and Shigella also contributed to the burden of illness. Analytical studies fot particular stall and with food items including coconut chutney which contair chain and food preparation techniques identified a lack of clear instruction uncertainty about their status as a ready-to-eat product. We describe the ir England, involving several gastrointestinal pathogens including a strain of :

Further Reading

International Journal of Food Microbiology 298 (2019) 1-10

Public health risks associated with *Salmonella* contamination of imported edible betel leaves: Analysis of results from England, 2011–2017

J. McLauchlin^{a,b,*}, H. Aird^c, N. Andrews^d, M. Chattaway^e, E. de Pinna^e, N. Elviss^f, F. Jørgensen^g, L. Larkin^h, C. Willis^g

^a Public Health England Food Water and Environmental Microbiology Services, National Infection Service, Colindale, London NW9 5EQ, UK
^b University of Liverpool, Institute of Infection and Global Health, Waterbouse Building, 1-5 Browniow Street, Liverpool L69 3GL, UK
^c Public Health England Food Water and Environmental Microbiology Laboratory York, National Infection Service, National Agri-Food Innovation Campus, York YO41
1L2, UK

^d Public Health England Statistics, Modelling and Economics Department, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK ^e Public Health England Gastrointestinal Bacteria Reference Unit, National Infection Service, 61 Colindale Avenue, London NW9 5EQ, UK ^f Public Health England Food Water and Environmental Microbiology Laboratory London, National Infection Service, Colindale, London NW9 5EQ, UK ^g Public Health England Food Water and Environmental Microbiology Laboratory Porton, National Infection Service, Porton Down, Salisbury SP4 0JG, UK ^h Public Health England, Gastrointestinal Infections Department, National Infection Service, London, NW9 5EQ, UK

DATA OMICROBIOLOGY

Genomic approaches used to investigate an atypical outbreak of *Salmonella* Adjame

OUTBREAK REPORT

Chattaway et al., Microbial Genomics 2019;5

DOI 10.1099/mgen.0.000248

Marie Anne Chattaway,^{1,*}† Nastassya Chandra,²† Anaïs Painset,¹ Victoria Shah,³ Peter Lamb,² Elsie Acheampong,³ Janice Lo,³ Bharat Patel,⁴ Lesley Larkin,⁵ Martin Sergeant,⁶ Martin Cormican,⁷ Eva Litrup⁸ and Paul Crook²

Abstract

MICROBIAL GENOMICS

In 2017, an outbreak of gastroenteritis in England attributed to *Salmonella* Adjame was detected and investigated. With the introduction of whole genome sequencing (WGS) for microbial typing, methods for comparing international outbreak data require evaluation. A case was defined as a person resident in England with a clinical sample from 1 June 2017 to 27 July 2017 from whom S. Adjame was isolated. Cases were interviewed and exposures analysed. Backward tracing of food provenance was undertaken. WGS was performed on isolates from cases and historical isolates and compared using Public Health England's SnapperDB high-quality SNP pipeline and Enterobase's *Salmonella* core genome multi-locus sequence typing (cgMLST) scheme. In total, 14 cases were identified. The majority were vegetarian, probably of South Asian descent, with a median age of 66.5 years with no recent international travel reported. Cases consumed a range of fresh food products

ORIGINAL ARTICLE

Imported edible leaves collected at retail sale in England during 2017 with an emphasis on betel and curry leaves: microbiological quality with respect to *Salmonella*, Shigatoxin-producing *E. coli* (STEC) and levels of *Escherichia coli*

J. McLauchlin^{1,2} D. H. Aird³, A. Charlett⁴, M. Chattaway⁵, N. Elviss⁵, H. Hartman⁵, C. Jenkins⁵, F. Jørgensen⁷, L. Larkin⁸, L. Sadler-Reeves⁷ and C. Willis⁷

1 Public Health England Food Water and Environmental Microbiology Services, National Infection Service, London, UK 2 Institute of Infection and Global Health, University of Liverpool, Liverpool, UK

3 Public Health England Food Water and Environmental Microbiology Laboratory York, National Infection Service, York, UK

4 Public Health England Statistics, Modelling and Economics Department, National Infection Service, London, UK

5 Public Health England Gastrointestinal Bacteria Reference Unit, National Infection Service, London, UK

6 Public Health England Food Water and Environmental Microbiology Laboratory London, National Infection Service, London, UK

7 Public Health England Food Water and Environmental Microbiology Laboratory Porton, National Infection Service, Saliabury, UK 8 Public Health England, Gastrointestinal Infections Department, National Infection Service, London, UK

Acknowledgements

This presentation is the result of work across a wide variety of staff in all the different teams

- Colleagues in Local Authorities and Port Health Authorities
- PHE colleagues in:
 - FW&E Microbiology Laboratories
 - GBRU
 - TARGET Gastro
 - Statistics, Modelling and Economics Department
 - DAS
 - Nicola Davies and Jim McLauchlin for slide sharing